

• Current Probe

CP3120 (DC-70MHz/ 30A)

CP3050 (DC-50MHz/ 50A)

CP3030 (DC-15MHz/150A)

CP4040 (DC- 5MHz/500A)

• Current Probe Amplifier

CPA3000A (DC-100MHz)

CPA4000A (DC- 50MHz)

Shenzhen Zhiyong Electronics Co., Ltd

www.cybertek.cn

Table of Contents

Summary2
Products and Accessories2
Amplifier Panel2
Instruction for Probe Body4
Products Accessories
Products Specification
Testing Platform Setup10
Instruction for operation10
Trouble Shooting
Storage and Maintenance14
Packing List15

- > Please read the Instruction Manual carefully before use.
- > Please do not use in humid, flammable and explosive environment.
- > In case of electrical shocks, please do not open the device without authorization.

Summary

CPA3000A and CPA4000A is high performance Current Probe Amplifiers for the

CP3000/CP4000 AC/DC current probes .The current probes covered in this manual are listed below:

- ♦ CP3120 (30A/70MHz, compatible with CPA3000A)
- ♦ CP3050 (50A/50MHz, compatible with CPA3000A)
- ♦ CP3030 (150A/15MHz, compatible with CPA3000A)
- ♦ CP4040 (500A/5MHz, compatible with CPA4000A)

Products and Accessories

Amplifier Panel

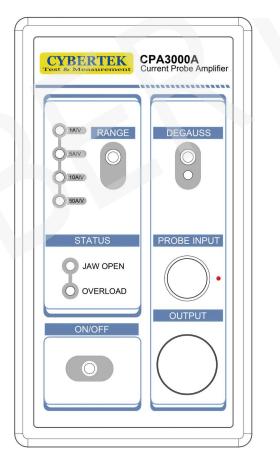


Figure 1: CPA3000A

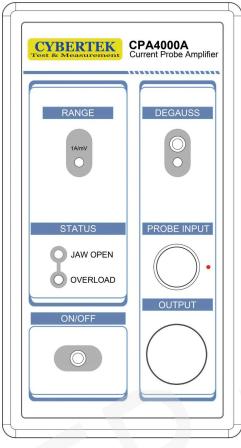


Figure 2: CPA4000A

Automatic Degaussing Zero Button and Indicator Light

When the current probe is detected to be degaussed, the indicator light beside the degauss button will blink red light. But the amplifier is not able to test all situations that probes needed to be degaussed, in order to test accurately, even when the indicator light is not on red, it is necessary to press the degauss button to degauss before proceeding.

A Make sure the probe is locked when degaussing, the amplifier output is connected to 50 Ω loads, and ensure no current flows through the tested wire.

♦ Range Selection Button

It is used to switch between two different ranges when the probe is connected (not available for CPA4000A). Please refer to sheet 4 for specific switching ranges.

Probe Jaw Indicator Light

When the indicator light is on red, indicating the probe jaw is unlocked shut, now degaussing cannot be done or may cause inaccurate measurement results. The probe should be locked for normal use.

♦ Overload Indicator Light

When indicator light is continuously on red, indicating current measured is over range; **NOTE:** To avoid personal injury, please do not measure current beyond standard of the amplifier.

Probe Error Indicator Light

When the light is on, indicating the amplifier is not able to identify the connected probe, please check the probe model number before connecting to the amplifier.

Power ON/OFF

The amplifier doesn't work when power is off, but the internal linear voltage is still connected to power supply voltage (switch power supply).

Probe Input

Probe should be connected correctly, otherwise may result in unseen damage to the probe and amplifier.

♦ Amplifier Output

Connect the amplifier output to oscilloscope input with a standard BNC cable. NOTE: Match the amplifier output terminal with 50Ω load.

Instruction for Probe Body

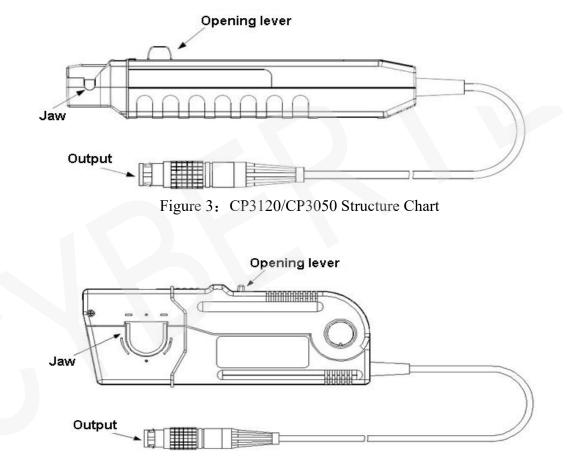


Figure 4: CP3030/ CP4040 Structure Chart

♦ Jaw

Measure the tested wires. Note: The measured wires must not exceed jaw open diameter.

Opening lever

Pull the lever back to open the clamp. Make sure in LOCK statues to ensure measurement accuracy.

♦ Output

Output connector, connect to Current Probe Amplifiers.

Products Accessories

50Ω Load \diamond

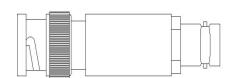


Figure 5: Standard 50Ω load: Frequency: DC-1GHz; Maximum Input Power:1 W

Coaxial Cable Connecting Lines

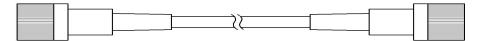


Figure 6: BNC Connecting Cable: 50Ω Impedance ; Both BNC Male Plug Ends; 1m in Length

♦ Power Supply Wires

Figure 7: Standard Power Leads

Product Specification

♦ Amplifier Technical Specification

Product parameters measurement is obtained in the following circumstances:

- = The probe and amplifiers are calibrated under 23±5°C environment.
- 4 The probe and amplifier working environment is listed in Table 5.
- **W** The current probe and amplifier have been warmed up for a period of at least 20 minutes.
- **W** The probe is degauss/autobalance routine has been performed after the 20-minute warm-up period, and thereafter whenever the PROBE DEGAUSS/AUTOBALANCE light blinks.
- = The amplifier output is correctly connected to 50 Ω load.

Amplifier	CPA3000A			CPA4000A
DC gain accuracy		≤1%		
Probe type	CP3120	CP3050	CP3030	CP4040
Bandwidth (-3dB)	DC-70MHz	DC-50MHz	DC-15MHz	DC-5MHz
Rise time (10%~90%)	≤5ns	≤7ns	≤23ns	≤70ns
DC gain accuracy: Warranted	≤3%	≤3%	≤3%	≤3%
Typical	≤1%	≤1%	≤1%	≤1%
Input voltage	110-240VAC ($\pm 10\%$)			
Maximum power	50W			

Table 1 Amplifier Technical Specification Instruction

NOTE: 1. Guaranteed accuracy ≤3% testing environment temperature: 10°C-40°C
2. Environment Temperature for typical accuracy testing : 23°C±5°C

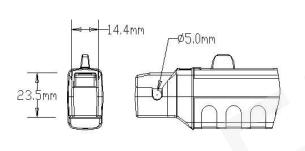
Parameters		Specification
Lei	ngth	165mm
W	idth	90mm
Не	ight	162mm
W <i>I</i> : -1-4	CPA3000A	1.08kg
Weight	CPA4000A	1.10kg

Amplifier (CPA3000A/CPA4000A) Mechanical Specification

Table 2 Amplifier Mechanical Specification Instruction

Current Probe Technical Specification (Typical)

Parameters		Model							
		CP3120		CP3050		CP3030		CP4040	
Range		1A/V 10A/V		5A/V 10A/V		5A/V 50A/V		1A/mV	
Minimum n	neasu	red current	1m	A	5mA		5mA		1A
Noise (Bandwidth	limit	ation 20MHz)	≤75u/	Arms	≤500uArms		≤500u	Arms	≤70mArms
Maximum		Range	10A/V	1A/V	10A/V	5A/V	50A/V	5A/V	1A/mV
current		DC continuous	30A	5A	50A	25A	150A	25A	500A
(Decreases a frequency increases	as	RMS (Positive wave)	21A	3.5A	35A	17.7A	150A	17.7A	500A
Figure 14~1	7)	Peak value	50A	50A	50A	50A	500A 500A		750A
Terminal lo	ad rec	quirement		1	1	50	Ω	L	
	Cui	rrent system	1	5ns	15ns		25ns		65ns
Delay	BN	C line 1m	5ns						
Maximum i	num insulation wire voltage 300V CAT I		300V CAT I		600V CATII 300V CATIII		600V CATII 300V CATIII		
Insertion im	ipeda	nce		efer to Figure 18 Refer to Figure19		Refer to Figure 20		Refer to Figure 21	


Figure 3 Probe Technical Specifications

Current Probe Mechanical Specifications

Parameters		CP3120	CP3050	CP3030	CP4040
	Length	175mm		175mm	
Probe handle Width		40mm		26mm	
Sille	Height	18mm		65mm	
Jaw diameter	w diameter 5mm (Figure 8)		20mm (H	Figure 9)	
Wire length		1.5m		2m	4m
Weight	177g		450g	504g	

Figure 4 Current Probe Mechanical Specification

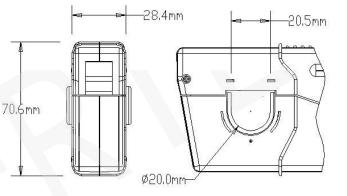


Figure 8 CP3120 and CP3050 Jaw Size Image

Figure 9 CP3030 and CP4040 Jaw Size Image

-10 -20 -30 -30 -40 -50 -60 1 100 10k 1M 100M Frequency(Hz)

Figure 10 CP3120 Amplitude-frequency Curve

Figure 11 CP3050 Amplitude-frequency Curve

Shenzhen Zhiyong Electronics Co., Ltd.

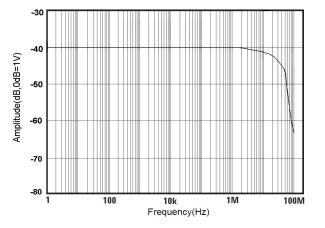
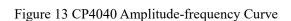
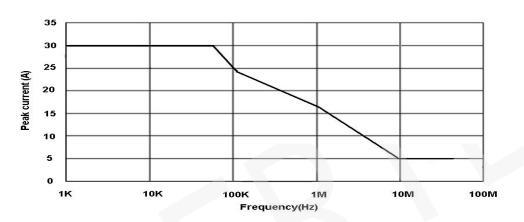



Figure 12 CP3030 Amplitude-frequency Curve



100

10k Frequency(Hz)

1M

10M

-30

-40

-50

-60

-70

-80

Amplitude(dB,0dB= 1V)

Figure 14 CP3120 Maximum Peak Value Current vs Frequency Curve

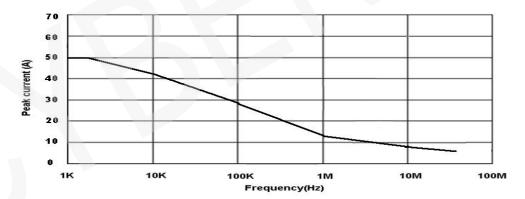
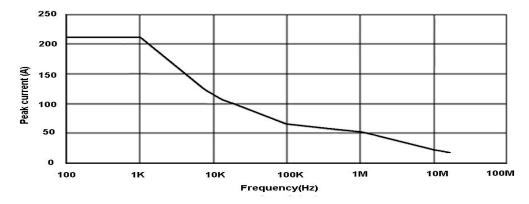
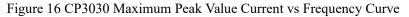




Figure 15 CP3050 Maximum Peak Value Current vs Frequency Curve

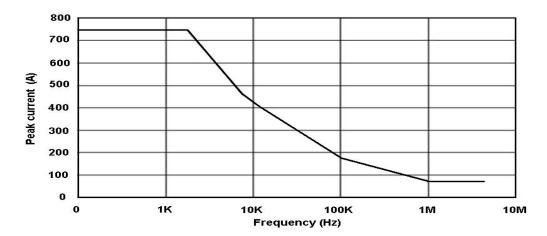
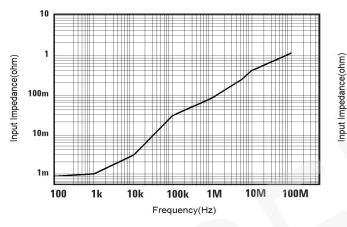



Figure 17 CP4040 Maximum Peak Value Current vs Frequency Curve

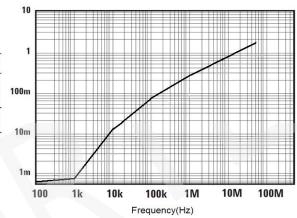


Figure 18 CP3120 insertion loss vs frequency curve

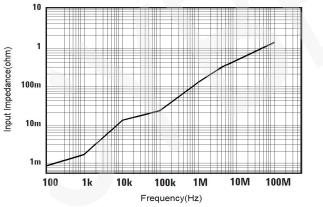


Figure 20 CP3030 insertion loss vs frequency curve

♦ Environmental Characteristics

Figure 19 CP3050 insertion loss vs frequency curve

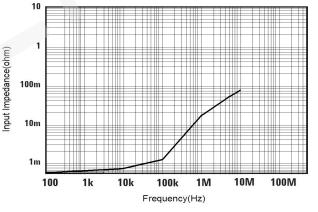


Figure 21 CP4040 insertion loss vs frequency curve

Environmental Characteristics	
Parameters	Values
Operating temperature and humidity	0° C~40°C, 80% or less
Storage temperature and humidity	-40°C~75°C, 80% or less
Operating altitude	Max 2000m
Storage altitude	Max 12000m

Table 5 Environmental Characteristics Specification

Test Platform Setup

The simplified Figure 22 shows equipments needed to set up the test platform and connecting methods.

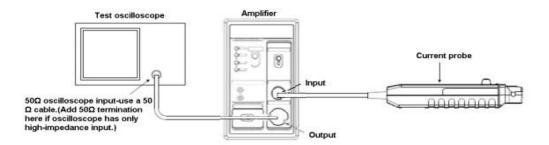


Figure 22 Diagrams for Test Platform Setup

Connect Amplifier to Oscilloscope

Connect the oscilloscope with 50Ω BNC cable if the oscilloscope channel input impedance can be set as 50Ω . You can also connect the feed through 50Ω load in the oscilloscope input if the oscilloscope has impedance $1M\Omega$ only.

Connects the Current Probe to the Amplifier

Select relevant amplifier for different current probes. If the current probe is connected to a wrong amplifier (e.g. connects CP4040 to CPA3000A), PROBE ERROR indicator light will be on. The connector connecting and disconnecting method is as follows:

Figure 23 Diagrams for Probe Connecting and Disconnecting to Amplifier

Instruction for Operation

Probe Online Degaussing

When no current flows through the wire embedded in jaw, under most conditions, we can degauss online. It can effectively compensate disordered voltage caused by the residual DC magnetic field.

NOTE:

- Make sure no current flows through the tested wires, otherwise cause inaccurate measurement.
- If the impedance of your circuit is higher than that shown in Table 6, the degauss procedure will succeed because the amplifier will be able to saturate the probe core. While degauss

occurs, the probe will induce a voltage in the unpowered circuit. This also appears in Table 6. Your circuit must be able to absorb this induced voltage. With low impedance circuits, several amperes may be induced in the circuit being measured. This may be of concern when you are using very small conductors.

Probe type	Minimum circuit resistance	Maximum introduced voltage
CP3120	10mΩ	40mV 200Hz
CP3050	10mΩ	40mV 200Hz
CP3030	5mΩ	30mV 200Hz
CP4040	lmΩ	15mV 200Hz

Table 6: Unpowered circuit degauss limits

Measuring the Differential Current

As shown in Figure 24, we can use the current probe to measure current differential between two wires, so that two sets of current measurement system are unnecessary.

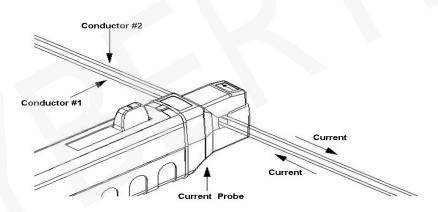


Figure 24: Measuring Method for Current Differential

NOTE:

- Do no put no insulation layer wires in CP3120 jaw; do no simultaneously put two or more than two no insulation layer wires in CP3030 or CP4040 jaws.
- When wires cannot be put into the jaw, must not forcefully close the jaw, otherwise the testing result is inaccurate.

If you are trying to examine a low-frequency signal that is superimposed on a comparatively large DC component, you can resolve the signal by performing these steps:

- Select the range setting that will display the maximum detail without exceeding the dynamic range of the signal.
- **4** Adjust the oscilloscope V/div sensitivity, to display maximum signal detail.

Improve measurement sensitivity

When measure AC signal with small amplitude or low frequency AC signal, we can make more turns for the measured wires to the same direction, to improve measurement sensitivity. For example, if 10mA is measured with 10-turn wires, then the practical current of the measured wire is 1mA. As shown in the following Figure 25.

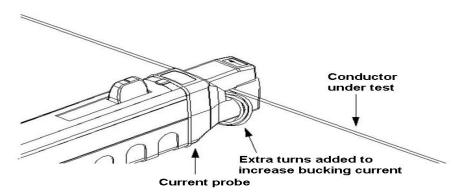


Figure 25 Measurement Method for Low current

NOTE:

- Such method only applies for measuring DC or low frequency signal.
- More turns may increase the insertion impedance of the probe, and the probe bandwidth may decrease too.

♦ Maximum Range for Current Probe

The current probe has three maximum rated current: Continuous current, pulse current and current time product. Exceed any of the three may saturated and magnetize the probe and lead to error of the measurement results.

- Maximum continuous current refers to the maximum current can be measured when measure DC or specific AC frequency. The maximum current can be measured decreases when frequency increases.
- Maximum pulse current refers to the maximum peak value of the pulse current can be measured accurately by the current probe (has no connection with the pulse width of the pulse current, but should be within normal bandwidth range).
- Current time product indicates when the measured pulse current peak value is between maximum continuous current and maximum pulse current, the duration of the current probe in measuring pulse peak value (i.e. the maximum pulse width for the measured current.)

E.G.: The maximum current time product for CP3120 is 500A*us at 10A/V, if the peak value current of the measured pulse current is 40A (higher than maximum continuous current 30A and lower than maximum pulse current 50A), then the maximum pulse width allowed is 12.5us (40A is divided by 500A*us). If it is known that the maximum pulse width of the tested current is 15us, then the maximum peak value current allowed is 33.3 A (15us is divided by 500A*us).

♦ Use CP4040 to Measure Discontinuous Current

When use CP4040 to measure, in order to ensure accuracy, you must pay attention to the following factors: peak value, continuous current and duty cycle of the discontinuous current, and environment temperature. All that affect maximum time the current probe can measure.

NOTE: When the measured current equals to peak value current or close to peak value current, the probe head will get hot. To avoid injury, please do not touch the probe head.

Trouble Shooting Methods

The following table list some potential malfunctions and solutions, this table may help you to solve the problems quickly; please do not disassemble for repair, in case of accidents.

Malfunctions	Solutions
The amplifier cannot be start	check whether the amplifier connects to the power supply
All indicator lights blink	Indicating the amplifier is thermal shutdown, you should cut off power, cooling for at least 15 minutes.
Current probe head cannot be degaussed	 Possibly the current probe is not locked shut. Lock shut the current probe. The current probe is not connected to amplifier correctly. The amplifier output is not connected to 50Ω load. The current probe is damaged or not the modal match with amplifier.
More than 10 seconds to degauss zero	 There flows current through the measured wires. Take out the probe from the measured circuit, degauss again. Probe damaged (probe mother panel or Hall device broken, producing loud noise or zero drift). If no problem is found in the probe, possibly the amplifier motherboard is damaged.
Fail to measure current (no amplifier output)	 The current probe jaw is not locked shut. Lock shut the jaw. The current probe is not correctly connected to the amplifier. The amplifier coupling mode is AC. Set DC coupling as the coupling mode. Degauss zero is not completely successful. Re-degauss zero. The Oscilloscope or amplifier is not displayed with appropriate calibration. Connecting cable between the oscilloscope and amplifier is damaged.

Disordered waveform is found during measurement	 The measured current exceeds range, or the current probe is exposed in severe magnetic field circumstances. Press the Degauss Balance button to degauss. Manually Degauss zero.
Inaccurate measurement	 Degauss the current probe The amplifier output is not connected to 50Ω load or to a load not 50 Ω. The measured current exceeds the current probe range; change the probe with larger measurement range. The amplifier of the current probe is not calibrated. Dirt on jaw. Disassemble the probe, clean it, and put some lubricant. The current probe main panel is damaged.
Frequency response decreases at high frequency	 Oscilloscope bandwidth is limited. Set full bandwidth. Do not measure current exceeds the probe maximum frequency, otherwise may cause probe overheated and damage it.
Loud noise with measurement result	 The current probe is not locked shut. Lock shut the probe. The current probe is not well connected to amplifier. The amplifier output terminal is not connected to 50Ω load. The current probe main panel is damaged.
Measurement result delays or pulse responds slowly.	 The amplifier output terminal is not connected to 50Ω load. Speed of the measured current exceeds transformation speed of the current probe. It is recommended to change higher frequency current probe. The oscilloscope bandwidth is limited or oscilloscope bandwidth is not enough.
Current probe jaw can't be easily opened and locked	Mechanical components of probe jaw are stained. Open the probe to clean.

Figure 7 Simple Troubleshooting Methods

Storage and Maintenance

- > Please keep the amplifier and probe clean and dry.
- \succ If need to clean, please wipe with soft and dry cloth, do not clean with chemicals.
- > When not in use, please put the probe in the package, and put it in cool, clean and dry places.
- Please must put it in the package supplied by our company when transporting, shock can be prevented.
- > Please disconnect the wires from the power strip when do not use for an extended period.

Packing List

Product	Amp1:	ifier	Current Probe			
Name	CPA3000A	CPA4000A	CP3120	CP3050	CP3030	CP4040
Body	1 unit	1 unit	1 unit	1 unit	1 unit	1 unit
Feed through 50Ω load resistance	1 unit	1 unit				
Coaxial-cable lines	1 pcs	1 pcs				
Power wires	1 pcs	1 pcs				
Instruction manual	1 pcs	1 pcs	1 pcs	1 pcs	1 pcs	1 pcs
Testing report	1 sheet	1 sheet	1 sheet	1 sheet	1 sheet	1 sheet
Warranted card	1 sheet	1 sheet	1 sheet	1 sheet	1 sheet	1 sheet

NOTE:--indicates not accessories for the product

CYBERTEK

SHENZHEN ZHIYONG ELECTRONICS CO., LTD

Addr: Room A1702, Building 4, TianAn Cyber Park, HuangGe North Road, LongGang

District, ShenZhen City, China

Tel: +86-400 852 0005

+86-755-86628000

Q Q: 400 852 0005

Fax: +86)0755-8662 0008

Email: cybertek@cybertek.cn

Url: http://www.cybertek.cn

© Zhiyong Electronics, 2023 Published in China, Jun. 1, 2023